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ABSTRACT

Many emerging real-world applications require fast processing of
large-scale data represented in the form of graphs. In this paper, we
design a Field-Programmable Gate Array (FPGA) framework to ac-
celerate graph algorithms based on the edge-centric paradigm. Our
design is flexible for accelerating general graph algorithms with
various vertex attributes and update propagation functions, such as
Sparse Matrix Vector Multiplication (SpMV), PageRank (PR), Single
Source Shortest Path (SSSP), and Weakly Connected Component
(WCCQ). The target platform consists of large external memory to
store the graph data and FPGA to accelerate the processing. By
taking an edge-centric graph algorithm and hardware resource con-
straints as inputs, our framework can determine the optimal design
parameters and produce an optimized Register-Transfer Level (RTL)
FPGA accelerator design. To improve data locality and increase
parallelism, we partition the input graph into non-overlapping par-
titions. This enables our framework to efficiently buffer vertex data
in the on-chip memory of FPGA and exploit both inter-partition and
intra-partition parallelism. Further, we propose an optimized data
layout to improve external memory performance and reduce data
communication between FPGA and external memory. Based on our
design methodology, we accelerate two fundamental graph algo-
rithms for performance evaluation: Sparse Matrix Vector Multipli-
cation (SpMV) and PageRank (PR). Experimental results show that
our accelerators sustain a high throughput of up to 2250 Million Tra-
versed Edges Per Second (MTEPS) and 2487 MTEPS for SpMV and
PR, respectively. Compared with several highly-optimized multi-
core designs, our FPGA framework achieves up to 20.5x speedup
for SpMV, and 17.7x speedup for PR, respectively; compared with
two state-of-the-art FPGA frameworks, our designs demonstrate
up to 5.3x and 1.8x throughput improvement for SpMV and PR,
respectively.
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1 INTRODUCTION

Graphs have become increasingly important for representing real-
world networked data in emerging applications, such as the World
Wide Web, social networks, genome analysis, and medical infor-
matics [1]. To facilitate the processing of large graphs, many graph
processing frameworks have been developed based on general pur-
pose processors [1-6, 34-37]. These frameworks provide high-level
programming models for the users to easily perform graph pro-
cessing. They also focus on optimizing cache performance and
exploiting thread-level parallelism to increase throughput. How-
ever, general purpose processors are not the ideal platform for graph
processing [7, 8]. They induce several inefficiencies including (1)
wasted external memory bandwidth due to inefficient memory ac-
cess granularity (i.e., loading and storing entire cacheline data while
operating on only a portion of the data) and (2) ineffective on-chip
memory usage due to the poor spatial and temporal locality of
graph algorithms. To address these inefficiencies, dedicated hard-
ware accelerators for graph processing have recently gained lots of
interest [7-23].

With the increased interest in energy-efficient acceleration, Field-
Programmable Gate Array (FPGA) has become an attractive plat-
form to develop accelerators [24, 25]. State-of-the-art FPGA devices,
such as UltraScale+ FPGAs [26], provide dense logic elements (up
to 5.5 million), abundant user-controllable on-chip memory re-
sources (up to 500 Mb), and interfaces for various external memory
technologies (e.g., hybrid memory cube [16]). Amazon Web Ser-
vice has recently launched FPGA-based cloud instances to allow
customers to develop FPGA accelerators for complex applications.
FPGAs have also been introduced into data centers to provide cus-
tomized acceleration of computation-intensive tasks [25]. Prior
works that accelerate graph processing on FPGA have shown sig-
nificant speedup and energy improvement over general purpose
processors [9-11, 14-17]. However, most of these FPGA acceler-
ators are algorithm-specific and require high development effort.



Therefore, developing an FPGA framework for general graph algo-
rithms is becoming a new trend [21-23]. However, existing FPGA
frameworks are designed based on the vertex-centric paradigm,
which accesses the edges of vertices through pointers or vertex in-
dices. This can result in massive random external memory accesses
as well as accelerator stalls [17].

In this paper, we propose an FPGA framework based on the edge-
centric paradigm [3]. Different from vertex-centric paradigm, edge-
centric paradigm traverses edges in a streaming fashion, making
FPGA an ideal platform for the acceleration [27]. Our framework
can accelerate general edge-centric graph algorithms and generate
the optimized FPGA accelerator which is implemented as parallel
pipelines to fully exploit the massive parallelism of FPGA. The main
contributions of our work are:

e We propose an FPGA framework for accelerating general
graph algorithms using the edge-centric paradigm. We ac-
celerate two fundamental graph algorithms, Sparse Matrix
Vector Multiplication (SpMV) and PageRank (PR), to evaluate
the performance of our framework.

e We adopt a simple graph partitioning approach to partition
the input graph. This enables an efficient use of the on-chip
RAMs of FPGA to buffer vertex data. As a result, the process-
ing engines on the FPGA can access the vertex data directly
from the on-chip RAMs during the processing.

e Our framework exploits inter-partition and intra-partition
parallelism at the same time. Distinct partitions are con-
currently processed by distinct processing engines on the
FPGA. Each processing engine consists of parallel pipelines
to process distinct edges of a partition.

e We also develop a design automation tool, which can produce
the synthesizable Verilog RTL of our design based on user’s
input parameters. The tool allows users to easily and quickly
construct graph processing accelerators.

e Experimental results show that our designs achieve a high
throughput of up to 2250 MTEPS and 2487 MTEPS for SpMV
and PR, respectively. Compared with state-of-the-art FPGA
designs, our framework achieves up to 5.3x and 1.8% through-
put improvement for SpMV and PR, respectively.

The rest of the paper is organized as follows: Section 2 covers the
background; Section 3 presents the framework overview; Section 4
discusses our optimizations; Section 5 describes the implementation
detail; Section 6 reports experimental results; Section 7 introduces
the related work; Section 8 concludes the paper.

2 BACKGROUND
2.1 Edge-centric Graph Processing

Edge-centric paradigm is flexible for capturing various graph algo-
rithms with different graph structures, data types, and graph update
functions [3]. Its computation follows a scatter-gather program-
ming model. As shown in Algorithm 1, the processing is iterative,
with each iteration consisting of a scatter phase followed by a gather
phase. In the scatter phase, each edge is traversed to produce an
algorithm-specific update based on the source vertex of the edge. In
the gather phase, all the updates produced in the previous scatter
phase are applied to the corresponding destination vertices. The
advantage of edge-centric paradigm is that it traverses the edges
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in a streaming fashion. This makes FPGA an ideal acceleration
platform since FPGA has been widely used to accelerate streaming
applications [27].

Algorithm 1 Edge-centric Graph Processing

while not done do
Scatter phase:
for each edge e do
Produce an update u < Process_edge(e, ve.src)
end for
Gather phase:
for each update u do
Update vertex u.dest < Apply_update(u, vy, gess)
9: end for
10: end while

1:
2
3
4:
5:
6
7
8

Vertex-centric paradigm is also widely used to design graph pro-
cessing frameworks [1]. However, one key issue of vertex-centric
paradigm is that traversing the edges requires random memory
accesses through indices or pointers [3]. The random memory ac-
cesses are highly irregular such that conventional memory con-
trollers are not able to efficiently handle them. In this scenario,
accelerator may frequently stall and the performance can signif-
icantly deteriorate [17]. Compared with vertex-centric paradigm,
edge-centric paradigm completely eliminates the random memory
accesses to the edges. Therefore, for large-scale graphs whose edge
set is much larger than the vertex set, edge-centric paradigm can
achieve superior performance than vertex-centric paradigm [3].

2.2 Data Structures

Edge-centric paradigm uses the coordinate (COO) format to store
the input graph [3]. The COO format stores the graph as an edge
array which has been sorted based on the source vertices of the
edges!. Each edge in the edge array is represented as a <src, dest,
weight> tuple, which specifies the source vertex, the destination
vertex, and the weight of the edge, respectively. All the vertices
are stored in a vertex array, with each vertex having an algorithm-
specific attribute (e.g., PageRank value of the vertex). Each update
produced in the scatter phase is represented as a <dest, value> pair,
in which dest denotes the destination vertex of the update and value
denotes the value of the update. Figure 1 shows the data structures
of an example graph?.

2.3 Algorithms

In this paper, we accelerate two fundamental graph algorithms
which are core kernels and building blocks in many applications.
This section briefly introduces these two algorithms and shows
how each algorithm maps to the edge-centric paradigm.

2.3.1 Sparse Matrix-Vector Multiplication. Sparse matrix-vector
multiplication (SpMV) is a widely used computational kernel in
scientific applications [10]. Generalized SpMYV iteratively computes

!For undirected graphs, each edge is represented using a pair of directed edges, one in
each direction.

%In this example, we assume the value of each update is obtained by multiplying the
edge weight and the attribute of the source vertex of the edge
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Figure 1: Example graph and its associated data structures

x!*th = Ax! = @ A; ® x!, where As a sparse H X I matrix with
row vectors A;, x is a dense vector of size I, ® and ® are algorithm-
specific operators®, and t denotes the number of iterations that
have been completed. When transformed into a graph problem,
each non-zero entry of A is represented as a weighted edge, and
each element of x is represented as a vertex. Table 1 shows the
mapping of SpMV to edge-centric paradigm, where we use Attr(v)
to denote the algorithm-specific attribute associated with vertex v.

Table 1: Mapping of SpMV to edge-centric paradigm

Apply_update(u, vu.dest)
Attr(vy dest) =
Attr(vy dest) ® u.value

Process_edge(e, Ve .src)
u.value = e.weight ® Attr(ve.src)
u.dest = e.dest

2.3.2  PageRank. PageRank (PR) is used to rank the importance
of vertices in a graph [28]. It computes the PageRank value of each
vertex which indicates the likelihood that the vertex will be reached.
The computation of PageRank is iterative. Initially, each vertex is
assigned the same PageRank value. Then, in each iteration, each
vertex v updates its PageRank value based on Equation (1), in which
d is a constant called damping factor; |V| is the total number of
vertices of the graph; v; represents the neighbor of v such that v
has an incoming edge from v;; L; is the number of outgoing edges
of v;. Table 2 shows the mapping of PR to edge-centric paradigm.

PageRank(v;)
d il Akttt A
T

1-d

PageRank(v) = (1)

Table 2: Mapping of PR to edge-centric paradigm

Apply_update(u, vy dest)
Attr(vy dest) =
Attr(vy gest) + u.value

Process_edge(e, Ve src)

AXALLr(Ve src)
#_outgoing_edges(vVe src)
u.dest = e.dest

u.value =

3We use standard addition and multiplication operators for SpMV in this paper.
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3 FRAMEWORK OVERVIEW

Our framework targets a system architecture as depicted in Fig-
ure 2, which consists of external memory (e.g., DRAM) and FPGA
accelerator. The external memory stores all the graph data includ-
ing vertices, edges, and updates. On the FPGA, the on-chip RAMs
are used as buffers to buffer vertex data (see Section 4.1), and the
processing logic is implemented as parallel pipelines to process
the edges and updates. Given an edge-centric graph algorithm, our
framework maps it to the target architecture and customizes the
processing logic based on the ‘Process_edge()’ and ‘Apply_update()’
functions. Users have the flexibility to decide the architecture pa-
rameters of the on-chip RAMs and processing logic based on the
hardware resource constraints. Our framework also provides a de-
sign automation tool (see Section 5.3) to generate the Verilog code
of the FPGA accelerator based on the architecture parameters.

External Memory

AN
V4

Memory Interface

{

Processing
Logic

¢

On-chip
RAMs

=

FPGA

Figure 2: Target architecture of our framework

4 ALGORITHMIC OPTIMIZATIONS

In order to to improve the performance of our framework, we
propose three optimizations, including (1) partitioning the input
graph to enable vertex buffering (Section 4.1), (2) parallelizing the
execution of edge-centric paradigm (Section 4.2), and (3) combining
updates to reduce data communication (Section 4.3).

4.1 Vertex Buffering

In each iteration, vertex data (e.g., Attr(v) in Tables 1 and 2) are
repeatedly accessed and updated. Therefore, we propose to buffer
the vertex data in the on-chip RAMs, which offer fine-grained single-
cycle accesses to the processing logic. For large graphs whose vertex
array cannot fit in the on-chip RAMs, we partition the graph using
a simple vertex-index-based partitioning approach [29] to ensure
that the vertex data of each partition fit in the on-chip RAMs.
Assuming the on-chip RAMs can store the data of m vertices,
we partition the input graph into k = |—‘Lm|-| partitions, where |V|
denotes the total number of vertices in the graph. Firstly, the vertex
array is partitioned into k vertex sub-arrays; the i-th vertex sub-
array includes m vertices whose vertex indices are between i X m
and (i + 1) x m — 1 (0 < i < k). We define each vertex sub-array



as an interval. Secondly, the edge array is partitioned into k edge
sub-arrays; the i-th edge sub-array includes all the edges whose
source vertices belong to the i-th interval. We define each edge
sub-array as a shard. The i-th shard and the i-th interval consti-
tute the i-th partition. Each partition also maintains an array to
store the updates whose destination vertices belong to the interval
of the partition. We define the update array of each partition as
a bin. Note that the data of each shard remain fixed during the
entire processing?; the data of each bin are recomputed in every
scatter phase; the data of each interval are updated in every gather
phase. Figure 3 shows the data layout after the graph in Figure 1 is
partitioned into two partitions and the interval of each partition
has 2 vertices (i.e., k = 2,m = 2).

Algorithm 2 Edge-centric graph processing based on partitioning

1: while not done do

2. Scatter phase:

3. forifromO0tok—1do

4 Read Interval; into on-chip RAMs
5: for each e € Shard; do

6 u «— Process_edge(e, Ve src)

7 end for

8:  end for

9:  Gather phase:
10:  forifromOtok—1do
11: Read Interval; into on-chip RAMs
12: for each u € Bin; do
13: Apply_update(u, vy, gest)
14: end for
15: Write Interval; into external memory

16:  end for
17: end while

Partitiong,

(" Interval, Shard, Bing )
viq | attribute src | dest | weight dest | value
Vg 0.2 Vo vy 2.0 vy 0.4
21 0.8 21 V3 3.0 Vo 1.5

K 121 0.3 j

Partition,

4 Intervaly Shard; Bin, )
Vid attribute src | dest [ weight dest | value
v, 1.5 v, Vo 1.0 vy 2.4
V3 4.2 V> V1 0.2

2

Figure 3: Data layout after graph partitioning

Algorithm 2 illustrates the computation of edge-centric paradigm
after graph partitioning. All the intervals, shards, and bins are stored
in the external memory. Before a partition being processed, all the
data of its interval are pre-fetched and buffered in the on-chip RAMs.
Then, edges (updates) are streamed from the external memory
during the scatter (gather) phase. Due to the vertex buffering, the
vertex data to access in Lines 6 and 13 of Algorithm 2 have already
been buffered into on-chip RAMs by executing Lines 4 and 11,
respectively; therefore, the processing logic can directly access them
from the on-chip RAMs, other than from the external memory.

4.2 Parallelization Strategy

4.2.1 Inter-partition Parallelism. Partitioning the input graph
also increases the available parallellism since that distinct partitions
can be concurrently processed. We define the parallelism to concur-
rently process distinct partitions as inter-partition parallelism.
Assuming the processing logic consists of p (p > 1) Processing
Engines (PEs), our framework can independently process p par-
titions in parallel. The inter-partition parallelism of the design is
denoted as p. When a PE completes the processing of a partition, it
is automatically assigned another partition to process.

4We assume the edges of the input graph do not alter during the processing.
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4.2.2  Intra-partition Parallelism. Inside each processing engine,
we employ parallel pipelines to concurrently process distinct edges
(updates) of each shard (bin) during the scatter (gather) phase. We
define the parallelism to concurrently process distinct edges or
updates of a partition as intra-partition parallelism. Assuming
each processing engine has q (¢ > 1) parallel pipelines (see Section
5.2), q distinct edges (updates) of the same partition can be con-
currently processed by the processing engine during the scatter
(gather) phase per clock cycle. The intra-partition parallelism of
the design is denoted as g.

4.3 Update Combination Mechanism

In the scatter phase, because traversing each edge produces an up-
date, the total number of produced updates is equal to the number
of edges |E|. Therefore, |E| updates are written into the external
memory in each scatter phase. In order to reduce the data com-
munication for writing updates into the external memory in the
scatter phase, we propose an update combination mechanism
to combine the updates that have the same destination vertex before
writing them into the external memory. To enable the update combi-
nation mechanism, we propose an optimized data layout by sorting
the edges of each shard based on the destination vertices. Due to
this data layout optimization, in the scatter phase, the updates that
have the same destination vertex are produced consecutively. Thus,
consecutive updates that have the same destination vertex can be
easily combined as one update and then written into the external
memory. For example, for PR, combining two updates is performed
by summing them up. Note that this optimization also reduces the
number of updates to be processed in the gather phase. Therefore,
the data communication of the gather phase is reduced as well.

5 IMPLEMENTATION DETAIL

5.1 Architecture Overview

We show the top-level architecture of our FPGA design in Figure 5.
The DRAM connected to the FPGA is the external memory which
stores all the intervals, shards, and bins. There are p processing
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Figure 5: Top-level architecture

engines (PEs) on the FPGA, which can be customized based on
the target graph algorithm. These PEs process p distinct partitions
in parallel. Each PE has an individual interval buffer, which is
constructed by on-chip URAMs (i.e., UltraRAMs) and used to store
the interval data of the partition being processed by the PE. In the
scatter phase, the PEs read edges from the DRAM and write updates
into the DRAM. In the gather phase, the PEs read updates from the
DRAM and write updated vertices into the DRAM.

5.2 Processing Engine

Figure 4 depicts the architecture of the processing engine (PE). Each
PE employs g processing pipelines (g > 1), thus is able to concur-
rently process g input data in each clock cycle. Each processing

pipeline has three stages, including vertex read stage, computation
stage, and vertex write stage.

In the scatter phase, the input data represent edges. In each
clock cycle, each processing pipeline takes one edge as input; then,
the vertex read stage reads the data of the source vertex of the
edge from the interval buffer; the computation stage produces the
update based on the edge weight and the source vertex (i.e., the
‘Process_edge()’ function in Algorithm 2). Note that the vertex
write stage and hazard detector do not work during the scatter
phase; this is because the scatter phase only has read accesses to
the vertices. All the updates produced by the processing pipelines
are fed into an update combining network. The update combining
network employs parallel Compare-and-Combine (CaC) units to
combine the input updates based on their destination vertices in a
bitonic sorting fashion [30]. Figure 6 depicts the architecture of the
update combining network for ¢ = 4. Each CaC unit compares the
destination vertices of the two input updates. If the two updates
have the same destination vertex, they are combined as one update;
otherwise, the two updates are sorted based on their destination
vertices and output to the next pipeline stage. When q is a power
of 2, the update combining network contains (1+log q)- logq - q/4
CaC units.

In the gather phase, the input data represent updates. In each
clock cycle, each processing pipeline takes one update as input; then,
the vertex read stage reads the data of the destination vertex of the
update from the interval buffer; the computation stage computes
the updated data of the destination vertex (i.e., the ‘Apply_update()’
function in Algorithm 2); at last, the vertex write stage writes the
updated data of the destination vertex into the interval buffer. Since
the gather phase performs both read and write accesses to the vertex
data, read-after-write data hazard may occur. In order to handle the
possible data hazard, we implement a data hazard detector using a
fine-grained locking mechanism. For each vertex in the partition

Input Output
Data Interval Buffer Updates
R | . A

Harzard Update Combining
Detector Network

rProcessing Engine

—> Vertex

Update Write Completion - Processing

Signal pipeline

Figure 4: Architecture of processing engine
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being processed, the hazard detector stores a 1-bit flag in Block
RAMs (BRAMs). A flag with value 1 means the attribute of the
corresponding vertex is being computed by one of the processing
pipelines, and thus cannot be read at this time. For each input
update, the hazard detector checks the flag of the destination vertex:
if the flag is 0, the update is fed into the processing pipeline and the
flag is set to 1; otherwise, the pipeline stalls until the flag becomes 0.
Note that when the processing pipeline writes any updated vertex
data into the interval buffer, it also sends a vertex-write-completion
signal to the hazard detector to set the flag of the corresponding
vertex back to 0. Therefore, deadlock will not occur.

5.3 Design Automation Tool

We have built a design automation tool to allow users to rapidly
generate the FPGA accelerators based on our framework. Figure
7 illustrates the development flow of the tool. First, users need
define the algorithm parameters of the target edge-centric graph
algorithms (e.g., data width of each vertex attribute) and provide
resource constraints of the FPGA design; for example, users can
specify how much block RAM resource can be used. Then, based on
the input information, the framework determines the architecture
parameters (e.g, the number of processing engines) and generates
the corresponding design modules, such as hazard detector, process-
ing pipelines, and update combining network, etc,. Finally, the tool
connects these design modules to produce the RTL design of the
FPGA accelerator, which automatically includes our proposed opti-
mizations such as vertex buffering, parallel pipelined processing,
and update combining.

6 PERFORMANCE EVALUATION
6.1 Experimental Setup

The experiments are conducted using the Xilinx Virtex UltraScale+
xcvu3pfive1517 FPGA with -2L speed grade [26]. The target FPGA
device has 394,080 slice LUTs, 788,160 slice registers, 25 Mb of
BRAMs, and 90 Mb of UltraRAMs. Four DDR3 SDRAM chips are
used as the external memory, with each chip having a peak ac-
cess bandwidth of 15 GB/s. To evaluate our designs, we perform
post-place-and-route simulations using Xilinx Vivado Design Suite
2017.2. Table 3 summaries the key characteristics of the graphs
used in the experiments. These are real-life graphs and have been
widely used in the related work [3-6, 22, 23].
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Table 3: Real-life graph datasets used for evaluation

| Dataset | # Vertices |V| | # Edges |E| | Description |
WK [31] 24M 5.0 M Wikipedia network
LJ [32] 48 M 69.0 M Social network
TW [33] 41.6 M 1468.4 M Twitter network

For SpMYV, each edge is represented using 96 bits (32-bit src,
32-bit dest, and 32-bit weight); each vertex attribute is a 32-bit
floating-point number (IEEE 754 single precision); each update is
represented using 64 bits (32-bit value and 32-bit dest). For PR, each
edge is represented using 64 bits (32-bit src and 32-bit dest); each
vertex is represented using 64 bits (32-bit attribute and 32-bit to
record the number of outgoing edges of the vertex); each update is
represented using 64 bits (32-bit value and 32-bit dest).

6.2 Performance Metrics

We use the following performance metrics for the evaluation.

e Resource utilization: the resource utilization of the target
FPGA device, including logic slices, registers, on-chip RAMs,
and DSPs

e Power consumption: the total power consumed by the FPGA
accelerator

e Execution time: the average execution time per iteration

e Throughput: the number of Traversed Edges Per Second
(TEPS) [22, 23]

6.3 Resource Utilization and Power
Consumption

We empirically set the number of PEs to 4 (p=4), the number
of pipelines in each PE to 8 (q=8), and the interval size to 128K
(m=128K) to maximize the processing throughput and saturate the
external memory bandwidth. For both SpMV and PR, the FPGA
accelerators sustain a high clock rate of 200 MHz. Table 4 reports
the resource utilization and power consumption of the FPGA accel-
erators.



Table 4: Resource utilization and power consumption

. LUT | Register | DSP | BRAM | URAM | Power
Algorithm
(%) (%) (%) | (%) (%) | (Watt)
SpMV 30.4 23.8 2.8 8.3 40.0 7.4
PR 30.0 23.5 2.8 8.3 40.0 6.0

6.4 Execution Time and Throughput

We report the execution time performance and throughput perfor-
mance in Table 5. We observe that our FPGA designs achieve a high
throughput of up to 2250 MTEPS and 2487 MTEPS for SpMV and
PR, respectively.

Table 5: Execution time and throughput

. Average Texec Throughput
Algorithm | Dataset per iterition (ms) (MTEng)

WK 5.0 1004

SpMV LJ 36.2 1906
TW 652.5 2250

WK 4.5 1116

PR LJ 32.7 2110
TW 590.4 2487

6.5 Impact of Update Combination

To show the effectiveness of our proposed update combination
mechanism and optimized data layout, we compare with a baseline
FPGA design. The baseline design uses the standard data layout
of the COO format without our data layout optimization. Figure 8
shows that our proposed optimization reduces the volume of data
communication by 1.3X to 1.8%.

6.6 Comparison with State-of-the-art

6.6.1 Comparison with State-of-the-art Multi-core Design. We
first compare the performance of our design with several highly-
optimized multi-core designs [3—6]. Table 6 shows the results of the
comparison based on the same datasets. It can be observed that our
FPGA designs achieve up to 20.5X and 17.7x higher throughput for
SpMV and PR, respectively. In addition, the power consumption
of our FPGA designs (< 10 Watt) are much lower than multi-core
platforms (typically > 80 Watt). Hence, from energy-efficiency
perspective, our framework achieves even larger improvement.

Compared with multi-core platforms, FPGA has the following
advantages: (1) the external memory accesses for multi-core im-
plementations need go through cache hierarchies, while FPGA
accelerators can directly stream data from the external memory;
(2) cache pollution may occur for multi-core implementation, re-
sulting in useful vertex data being evicted from cache; while the
on-chip RAMs of FPGA is fully user-controllable; (3) when us-
ing multi-threading technique, multi-core implementations may
require expensive atomic operations to prevent race conditions
(e.g., memory locks), which can significantly result in additional
overhead.
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Table 6: Comparison with state-of-the-art multi-core de-

signs
Throughput
Algorithm | Dataset | Approach OughPy Improvement
(MTEPS)
(3] 93 1.0x
SpMV LJ
This paper 1906 20.5%
(3] 119 1.0x
LJ [6] 1530 12.9%
This paper 2110 17.7x
PR [4] 408 1.0x
[5] 716 1.8
™
(6] 815 2.0
This paper 2487 6.1X

6.6.2 Comparison with State-of-the-art FPGA-based Design. We
further compare our proposed framework with two state-of-the-art
FPGA designs [22, 23]. Both of the FPGA designs aim to accelerate
general graph algorithms. Table 7 summarizes the results of the com-
parison. Compared with [23], our design achieves 5.3% throughput
improvement for SpMV. Compared with [22], our design achieves
1.2x to 1.8 throughput improvement for PR.



Table 7: Comparison with state-of-the-art FPGA-based de-
signs

) Throughput
Algorithm | Dataset | Approach Improvement
(MTEPS)
[23] 190
SpMV WK 5.3
This paper 1004
[22] 965
WK 1.2x
This paper 1116
[22] 1193
PR L] 1.8%x
This paper 2110
[22] 1856
™ 1.3%
This paper 2487

7 RELATED WORK
7.1 Software Graph Processing Frameworks

Many software-based graph processing frameworks have been de-
veloped, such as GraphChi [2], X-Stream [3], PowerGraph [4] and
GraphMat [6] on multi-core, and CuSha [35], Gunrock [36], and
Graphie [37] on GPU. These frameworks provide high-level pro-
gramming models to allow programmers to easily perform graph
analytics. They also focus on optimizing memory performance
and exploiting massive thread-level parallelism. GraphChi [2] is
the first graph processing framework on a single multicore plat-
form. It is based on the vertex-centric paradigm and proposes a
parallel sliding windows method to handle out-of-core graphs. X-
Stream [3] proposes the edge-centric paradigm to maximize the
sequential streaming of graph data from disk. GraphMat [6] maps
vertex-centric graph computations to high-performance sparse ma-
trix operations. CuSha [35] addresses the limitation of uncoalesced
global memory data accesses for GPU graph processing. Gunrock
[36] proposes a data-centric processing abstraction which acceler-
ates the frontier operations using GPU. Graphie [37] implements
the asynchronous graph-traversal model on GPU to reduce the data
communication.

The optimizations proposed in this paper are also applicable
to multi-core and GPU platforms. First, the partitioning approach
can be performed based on the cache size of multi-core and GPU
platforms to improve the cache performance [38]. Second, distinct
thread blocks (i.e., groups of threads) can concurrently process
distinct partitions, while inside each thread block, distinct threads
can process distinct edges or updates in parallel. Third, the update
combination mechanism can be performed using a parallel scan
operation.

7.2 FPGA-based Graph Processing Accelerators

Using FPGA to accelerate graph processing has demonstrated great
success. In [16, 19, 20], Breadth First Search (BFS) is accelerated on
FPGA-HMC platforms. The designs achieve a high throughput of
up to 45.8 GTEPS and power efficiency of up to 1.85 GTEPS/Watt
for scale-free graphs. In [12], an FPGA accelerator for SpMV is
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proposed based on a specialized CISR encoding approach. The de-
sign achieves one third of the throughput performance of a GTX
580 GPU implementation with 9X lower memory bandwidth and
7x less energy. However, many existing FPGA-based accelerators
[11, 12, 14-17] are algorithm-specific and cannot be easily extended
to accelerate other graph algorithms. GraphGen [21] is an FPGA
framework based on the vertex-centric paradigm to accelerate gen-
eral graph applications. GraphGen pre-processes the input graph by
partitioning it into subgraphs and then processes one subgraph at a
time. It also provides a compiler for automatic HDL code generation.
However, GraphGen requires the vertex data and the edge data of
each subgraph to fit in the on-chip memory of FPGA. For large real-
life graphs, this can lead to a large number of subgraphs and thus
significantly increase the scheduling complexity. GraphOps [23]
is a dataflow library for graph processing. It provides several com-
monly used building blocks for graph algorithms, such as reading
the attributes from all the neighbor. However, GraphOps is based
on the vertex-centric paradigm and thus suffers random memory
accesses to the edges. ForeGraph [22] is a multi-FPGA-based graph
processing framework. It partitions the graph and uses multiple
FPGAs to process distinct partitions in parallel. However, the perfor-
mance can be constrained by the communication overhead among
the FPGAs.

8 CONCLUSION

In this paper, we presented an FPGA framework to accelerate graph
algorithms based on edge-centric paradigm. We partitioned the
input graph to enable efficient on-chip buffering of vertex data and
increase the parallelism. We further proposed an efficient update
combination mechanism to reduce data communication. To facil-
itate non-FPGA-experts, we also developed a design automation
tool for our framework. We accelerated SpMV and PR to study
the performance of our framework. Experimental results showed
that our framework achieved up to 20.5x and 17.7x speedup com-
pared with highly-optimized multicore designs for SpMV and PR,
respectively. Compared with state-of-the-art FPGA frameworks,
our design achieved up to 5.3x and 1.8 X throughput improvement
for SpMV and PR, respectively. In the future, we plan to evaluate
our framework using more fundamental graph algorithms, such as
finding connected components and single source shortest path.
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